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Abstract. We study the coherence properties of a laser beam after propagation along a one-dimensional
lossless nonlinear optical waveguide. Within the paraxial, slowly-varying-envelope, and single-transverse-
mode approximations, the quantum propagation of the light field in the nonlinear medium is mapped onto a
quantum Gross-Pitaevskii-type evolution of a closed one-dimensional system of many interacting photons.
Upon crossing the entrance and the back faces of the waveguide, the photon-photon interaction parameter
undergoes two sudden jumps, resulting in a pair of quantum quenches of the system’s Hamiltonian. In the
weak-interaction regime, we use the modulus-phase Bogoliubov theory of dilute Bose gases to describe the
quantum fluctuations of the fluid of light and predict that correlations typical of a prethermalized state
emerge locally in their final form and propagate in a light-cone way at the Bogoliubov speed of sound in
the photon fluid. This peculiar relaxation dynamics, visible in the light exiting the waveguide, results in a
loss of long-lived coherence in the beam of light.

1 Introduction

In the presence of a significant Kerr optical nonlinearity,
a many-photon light beam can behave as a quantum fluid
of interacting bosons. This has opened the way to active
experimental and theoretical investigations of many-body
hydrodynamic and quantum features in photon-based sys-
tems, the research field of the so-called quantum fluids of
light (see Ref. [1] for a review).

Numerous experimental studies have been performed
in semiconductor planar microcavities, where the photon
field strongly couples to the exciton one to form a mixed
light-matter gas of interacting bosonic quasiparticles, the
so-called exciton-polaritons [1]. Among the most famous
experimental investigations done on exciton-polariton flu-
ids, one may cite the works demonstrating the occurrence
of a Bose-Einstein-type condensation [2], of a low-velocity
superfluidlike flow around a localized material defect [3],
of a Cherenkov radiation of Bogoliubov-type, linear, waves
in a supersonic-flow regime, as well as the hydrodynamic
nucleation of nonlinear excitations such as quantized vor-
tices [4,5] and dark solitons [6,7] past large impenetrable
obstacles. For what concerns the corresponding theoreti-
cal literature, we invite the reader to consult review [1]’s
bibliography.
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In semiconductor-planar-microcavity architectures,
the dynamics of the light fluid is of driven-dissipative
nature. This introduces a substantial complexity in the
theoretical treatment of these systems and may be
very detrimental for the experimental study of quantum
phenomena.

An alternative, and promising, platform to investigate
photon-fluid physics consists in the paraxial propagation
of a quasimonochromatic electromagnetic wave through a
nonabsorbing and cavityless, i.e., lossless, nonlinear opti-
cal medium of Kerr type. In contrast to what one has in
cavity-based devices, the optical field in a cavityless, prop-
agating, geometry obeys a fully conservative dynamics,
usually described by the nonlinear Schrödinger equation
of nonlinear optics within the paraxial and slowly-varying-
envelope approximations [8–11].

At the mean-field level, this wave equation is analogous
to the Gross-Pitaevskii equation of dilute atomic conden-
sates [12,13] after having exchanged the roles played by
the optical-axis coordinate z and by the physical time pa-
rameter t: light propagation in the z direction is naturally
described in terms of a Gross-Pitaevskii-type evolution
of the photon field in a three-dimensional (x, y, t) space
where t plays the role of the third spatial coordinate in
addition to the transverse positions x and y; the propa-
gation constant of the wave and the dispersion parameter
of the material provide two (a priori) different effective
masses to the light field in, respectively, the (x, y) plane
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and the t direction, the spatial profile of the medium’s re-
fractive index acts as an external potential, and finally, the
Kerr-induced nonlinear shift of the medium’s refractive in-
dex corresponds to contact interactions between photons.
The initial conditions of the problem are fixed by the pro-
file and the statistical properties of the light beam incident
on the front face of the nonlinear dielectric and the final
state may be reconstructed from the coherence and corre-
lation patterns of the light emerging from the back, i.e.,
after the above-discussed Gross-Pitaevskii-type evolution
across the medium.

This framework has been used in a number of experi-
mental works devoted to the study of nonlinear features in
propagating fluids of light, with a special attention dedi-
cated to their relation to hydrodynamics and superfluidity
aspects [14–20]. From the theoretical point of view, the
nonlinear propagating geometry has also been subjected
to numerous investigations, including, e.g., the study of
superfluidlike behaviors in the flow of a photon fluid past
a localized obstacle [21–25], of nonlinear phenomena with
light waves [26–29], and of the so-called acoustic Hawking
radiation from analog black-hole horizons [30–33], the lat-
ter being accompanied with experimental works (see, e.g.,
Refs. [34,35]).

Building atop the pioneering theoretical works [36,37]
(consult also Ref. [38]), a very general quantum theory of
paraxial-light propagation in a bulk cavityless nonlinear
optical medium was recently reported in reference [11].
Within the above-discussed z ←→ t mapping, exact com-
mutation relations for the quantum photon-field operator
at equal propagation coordinates z and different times
t were derived and the investigation of their practical
consequences on the transmission of a beam of coherent
light across a finite slab of weakly nonlinear dielectric im-
mersed in air was carried out. Within the reformulation
of light propagation in terms of an effective time evolu-
tion and as the Kerr nonlinearity is nonzero only inside
the dielectric, the nonlinear propagating geometry was
demonstrated to constitute a very simple realization of
a pair of quantum quenches of the system’s Hamiltonian
in the photon-photon interaction parameter: the first one
takes place at the entrance face of the nonlinear material
and the second one occurs at its exit face. In the weak-
nonlinearity regime, the main excitation process of the
quenched quantum fluid of light was shown to consist in a
sort of dynamical Casimir emission of correlated counter-
propagating Bogoliubov-type waves, reflecting in peculiar
features in the momentum distribution and in the near-
and far-field two-body correlation functions of the trans-
mitted beam of light. In this respect, the work done in
reference [11] made it possible to illustrate the power of
the cavityless, propagating, geometry as a promising plat-
form to investigate quantum dynamical features in closed,
conservative, systems of many interacting bosons [39,40].

In the present article, we pursue along these lines by
investigating the consequences of the quantum quenches
in the optical nonlinearity on the coherence of a beam of
light propagating in a one-dimensional nonlinear optical
waveguide. In such a configuration, the confining potential

induced by the refractive-index difference between the core
and the cladding of the waveguide in the transverse x, y
directions makes the dynamics unidimensional: the optical
field now depends only on z and t, with z playing, as usual,
the role of time and t referencing spatial positions along
the one-dimensional quantum fluid of light. We calculate
the degree of first-order coherence of the transmitted beam
of light in the weak-nonlinearity regime and predict that
correlations typical of the installation of a prethermalized
state [41] emerge locally in their eventual form and propa-
gate in a light-cone way at the Bogoliubov speed of sound
in the nonlinear medium, in a similar way as it was re-
cently observed in quantum-quenched phase-fluctuating
one-dimensional atomic Bose gases [42–44]. This results
in a loss of long-lived coherence in the transmitted beam
of light, which could have detrimental practical conse-
quences, e.g., in fiber-optic communication.

The paper is organized as follows. First, in Section 2,
we review the paraxial propagation of a quasimonochro-
matic light wave through a one-dimensional (1D) op-
tical waveguide presenting a Kerr nonlinearity, starting
from the full three-dimensional (3D), bulk, paraxial-optics
problem. In the single-transverse-mode regime, the trans-
verse profile of the light beam is frozen in the ground
state, described by a two-dimensional (2D) Schrödinger-
type equation, while the longitudinal motion is ruled
by a 1D nonlinear wave equation similar to the time-
dependent Gross-Pitaevskii equation of quasi-1D ultra-
cold dilute Bose gases. Then, in Section 3, we carry out
the quantization of the classical 1D propagation equation,
making use of the general 3D quantum field theory inves-
tigated in reference [11]. The resulting 1D quantum theory
makes it possible to describe quantum features in the 1D
light fluid for generic values of the photon-photon inter-
action parameter. We also discuss how the quantum fluc-
tuations of the 1D optical field in the dilute-gas limit can
be treated within the modulus-phase Bogoliubov theory
of weakly interacting Bose gases. Assuming that the pho-
ton fluid propagating in the waveguide is well in the dilute
regime, we calculate in Section 4 the degree of first-order
coherence of the transmitted beam of light, after propa-
gation along the waveguide. The features that it displays
are interpreted in terms of a dynamical local emergence of
a prethermalized state in a quenched 1D quantum system
of many weakly interacting photons. Finally, we draw in
Section 5 our conclusions and give prospects to the present
work.

2 Classical wave equation

In this section, we review the classical equation of motion
of a coherent quasimonochromatic light beam propagating
along a Kerr-type 1D optical waveguide. As reviewed in
Section 2.2.1, our approach for describing the 1D motion of
the optical field is based on a 1D reduction of the 3D non-
linear wave equation exposed in Section 2.1, in a way ana-
log to what it is standardly done in the theory of atomic
Bose gases to describe the motion of 1D-confined atom
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bosons. The formal analogy existing between the 1D prop-
agation equation and the time-dependent Gross-Pitaevskii
equation of quasi-1D dilute Bose-Einstein condensates will
lead us in Section 2.2.2 to reformulate the longitudinal
motion of the photon field in terms of an effective tempo-
ral evolution in a 1D space spanned by the physical time
parameter.

2.1 Three-dimensional propagation equation

We consider the propagation of a laser beam in a nonab-
sorbing 1D optical waveguide of length L along the z axis
(the propagation occurs in the positive-z direction and the
coordinate origin corresponds to the center of the entrance
face of the waveguide) and of total refractive index

n(x, ω) = n(ω) + Δn(x, ω) + n2(ω) |E|2. (1)

In this equation, the homogeneous contribution n(ω),
function of the optical angular frequency ω, takes into
account the chromatic dispersion of the waveguide, the
linear shift Δn(x, ω), function of x = (x, y), describes the
transverse spatial profile of the total refractive index, and
the nonlinear shift n2(ω) |E|2 originates from the optical
nonlinearity of the waveguide, of Kerr type. The latter is
proportional to the square modulus of the complex am-
plitude, the envelope, E of the laser wave’s electric field

E(x, z, t) =
1
2
E(x, z, t) ei(β0z−ω0t) + c.c. (2)

(“c.c.” stands for “complex conjugate”) of central angular
frequency ω0 and propagation constant β0 = β(ω0) in the
positive-z direction, where, denoting c0 the vacuum speed
of light, β(ω) = n(ω)ω/c0. Obviously, the total refractive
index (1) has to be transversally higher in the core of the
waveguide than at its surface to make an optical confine-
ment possible, that is, to realize a guiding configuration.
Finally, the optical medium constituting the waveguide is
supposed to be nonmagnetic and devoid of free electric
charges and the laser wave is assumed to maintain its po-
larization in the course of its propagation in the waveguide
so that a scalar appoach is valid, as implicitly considered
in equation (2).

Making use of the usual paraxial and slowly-
varying-envelope approximations (see, e.g., Refs. [8–10]),
Maxwell’s equations supplemented by equations (1)
and (2) lead to the following 3D nonlinear propagation
equation for the electric field’s envelope E(x, z, t) (see
Ref. [11] and references therein):

i
∂E
∂z

= − 1
2 β0
∇2E +

D0

2
∂2E
∂t2
− i

v0

∂E
∂t

+ U(x) E + g3D |E|2 E . (3)

In this equation, ∇ = (∂x, ∂y) denotes the nabla operator
in the x = (x, y) plane and the constants v0 = v(ω0) and
D0 = D(ω0) are the group velocity v(ω) = [dβ(ω)/dω]−1

of the photons in the medium and the group-velocity dis-
persion D(ω) = d2β(ω)/dω2 of the waveguide’s material

evaluated at the carrier’s angular frequency ω0; finally, the
parameters U(x) and g3D are defined as

U(x) = −k0 Δn(x, ω0) and g3D = −k0 n2(ω0), (4)

where k0 = ω0/c0 = β0/n0 [with n0 = n(ω0)] is the prop-
agation constant of the laser beam in air, i.e., outside the
waveguide, in the region where z < 0 or z > L.

2.2 One-dimensional propagation equation

2.2.1 One-dimensional reduction

Within the adiabatic approximation (see, e.g.,
Refs. [45–48] specific to the physics of Bose-Einstein
condensation), the transverse [that is, in the (x, y) plane]
light profile is not affected by optical powers at points
other than z and has a weak dependence on both z and
t. In this case, one may expand the envelope E of the
electric field as

E(x, z, t) = Ψ(z, t)Φ(x; |Ψ(z, t)|2), (5)

where Ψ is the function describing the longitudinal motion
and Φ, normalized to unity,

∫
d2x |Φ|2 = 1 (d2x = dx dy),

is the function describing the transverse one; in the adi-
abatic approximation, the latter depends parametrically
on the square modulus of Ψ,

|Ψ(z, t)|2 =
∫

d2x |E(x, z, t)|2, (6)

which actually fixes the electromagnetic power1 propagat-
ing in the waveguide. Inserting equation (5) into the 3D
wave equation (3), one obtains, at leading order in the
adiabatic approximation,

i
∂Ψ
∂z

=
D0

2
∂2Ψ
∂t2
− i

v0

∂Ψ
∂t

+ κ(|Ψ|2)Ψ, (7)

where the nonlinear term κ(|Ψ|2) is determined as a func-
tion of |Ψ|2 from the equation of motion of the transverse
profile,

κ(|Ψ|2)Φ =
[

− 1
2 β0
∇2 + U(x) + g3D |Ψ|2 |Φ|2

]

Φ. (8)

When the term proportional to g3D in the right-hand
side of equation (8) is small, a perturbative solution
of equation (8) yields κ(|Ψ|2) = κ0 + g1D |Ψ|2, where
κ0 is the eigenvalue associated to the ground state
Φ0(x) of the Schrödinger-type operator −∇2/(2 β0) +
U(x) {κ0 Φ0 = [−∇2/(2 β0) + U(x)] Φ0}, i.e., to the

1 The intensity of the propagating quasimonochromatic wave
of central angular frequency ω0 is expressed as a function of the
square modulus of the complex amplitude E of its electric field
as I = 1

2
c0 ε0 n0 |E|2, where ε0 is the vacuum permittivity. As

a result, the power P =
∫

d2x I carried by this wave may be
deduced from |Ψ|2 as P = 1

2
c0 ε0 n0 |Ψ|2.
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fundamental transverse modal function of the waveguide,
and where

g1D =
g3D

Aeff
, (9)

Aeff =
(
∫

d2x |Φ0|2)2∫
d2x |Φ0|4 =

1
∫

d2x |Φ0|4 (10)

denoting the effective area of the fundamental transverse
mode of the waveguide [8]. In this case, the 1D nonlinear
wave equation (7) becomes

i
∂Ψ
∂z

=
D0

2
∂2Ψ
∂t2
− i

v0

∂Ψ
∂t

+ κ0 Ψ + g1D |Ψ|2 Ψ. (11)

In view of experiments, it is important to explicit the do-
main of validity of equation (11). According to what pre-
cedes, the perturbative expansion κ(|Ψ|2) = κ0 +g1D |Ψ|2,
and so the resulting 1D nonlinear wave equation (11), is
accurate provided that the 1D nonlinear term g1D |Ψ|2 is
a weak correction to the ground-state eigenvalue κ0 of the
radial operator −∇2/(2 β0) + U(x),

|g1D| |Ψ|2 � |κ0|. (12)

This condition ensures that all radial motion is reduced to
zero-point oscillations, i.e., that the waveguide is charac-
terized by one, and just one, transverse mode: the funda-
mental one of wavefunction Φ0(x). In the present optical
context, the constraint (12) is the analog of the single-
transverse-mode condition [13,49]

|λ1D|n1D � � ω⊥ (13)

in the theory of quasi-1D ultracold Bose gases, λ1D, n1D,
and � ω⊥ denoting the effective 1D atom-atom interaction
constant, the 1D density, and the energy of the transverse
ground state, respectively, of the atomic Bose gas. Taking
advantage of the definitions (4) and (9), the inequality (12)
may be reformulated in terms of the optical constants of
the problem as

|ΔnNL| � |κ0|
k0

, (14)

where
ΔnNL =

ñ2(ω0)P
Aeff

(15)

is the nonlinear shift of the waveguide’s refractive in-
dex (1) expressed in terms of the Kerr-nonlinearity co-
efficient ñ2(ω0) = 2 n2(ω0)/(c0 ε0 n0) in intensity units
(that is, in m2/W in SI units), of the net power
P = 1

2 c0 ε0 n0 |Ψ|2 carried by the quasimonochromatic
wave (2), and of the waveguide’s effective transverse-mode
area Aeff .

As one may note, the shape of the “confining po-
tential” U(x) = −k0 Δn(x, ω0) has never been explicitly
specified, as a result of which the equations obtained up
to now are very general. However, always in view of ex-
periments, it is important to provide explicit formulas for
standard optical confinements, e.g., of parabolic or square-
well shape. This is what we do in Appendix A.

2.2.2 Gross-Pitaevskii-type time evolution

The formal analogy there exists between the 1D nonlinear
propagation equation (11) and the time-dependent Gross-
Pitaevskii equation of quasi-1D dilute Bose-Einstein con-
densates [13,46–48] is straightforward. The longitudinal
photon field Ψ (its square modulus |Ψ|2, respectively)
plays the role of the 1D order parameter of the conden-
sate (of its density, respectively), the optical-axis, prop-
agation, coordinate z that of time, the time parameter t
corresponds to the coordinate referencing points along the
1D condensate, the group-velocity dispersion D0, or more
precisely −1/D0, acts as a mass, κ0 plays the role of the
energy of the transverse ground state, and g1D corresponds
to the effective 1D atom-atom interaction constant. This
correspondence makes it possible to reformulate the prop-
agation of the wave (2) along the optical waveguide (1)
in the language of quantum hydrodynamics. Mention also
that the rigid-drift term −i ∂tΨ/v0 in the right-hand side
of the 1D equation (11) originates from the fact that
the photons propagate in the waveguide at the group
velocity v0.

To reexpress the propagation of the photon field Ψ(z, t)
in the positive-z direction in terms of a temporal evolution
in a 1D space spanned by the physical time parameter t,
we introduce the following coordinates:

τ =
z

v0
and ζ = v0 t− z, (16)

homogeneous to a time and a length, respectively. In these
new variables, equation (11) multiplied by the reduced
Planck constant � and the group velocity v0 reads

i �
∂Ψ
∂τ

= − �
2

2 m

∂2Ψ
∂ζ2

+ E0 Ψ + g |Ψ|2 Ψ, (17)

where the longitudinal optical field Ψ now has to be con-
sidered as a function of ζ and τ . We end up with an ef-
fective time-dependent 1D Gross-Pitaevskii equation for
the “order parameter” Ψ(ζ, τ) of the 1D “quantum fluid
of light” where

m = − �

v3
0 D0

(18)

is the photon effective mass, function of the group-velocity
dispersion D(ω) of the waveguide at ω = ω0, E0 = � v0 κ0,
and

g = � v0 g1D (19)

is the photon-photon (contactlike) interaction constant.
According to equation (18), we get a positive (nega-

tive) mass m when D0 < 0 (D0 > 0), i.e., when the waveg-
uide is characterized by an anomalous (normal) group-
velocity dispersion at ω0. On the other hand, according
to equations (4), (9), and (19), one has repulsive interac-
tions between photons (g > 0) when the medium is self-
defocusing [n2(ω0) < 0] and attractive interactions (g < 0)
when it is self-focusing [n2(ω0) > 0]. In Section 3.2, we
shall see that the dynamical stability of the fluid of light
requires that both m and g, i.e., both D0 and n2(ω0), have
the same sign.
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Finally, note that the second of equations (16) corre-
sponds to the relationship linking the coordinate systems
{x, z, t} and {x, ζ, t} of two Galilean frames of reference
of relative velocity v0 in the z direction. Thus, it is natu-
ral that the first-order derivative with respect to t in the
right-hand side of equation (11) is no longer present in
equation (17).

3 Quantum theory

In order to describe nonclassical – i.e., quantum – features
in the paraxial beam of light propagating in the 1D nonlin-
ear optical waveguide considered in Section 2, the classical
longitudinal light field Ψ(ζ, τ) obeying equation (17) has
to be replaced with a quantum field operator satisfying
suitable equal-time-τ , that is, within the z ←→ t mapping
introduced in Section 2.2.2, equal-z, boson commutation
relations, as done in the pioneering references [36,37] to
investigate quantum soliton propagation in optical fibers.
In Section 3.1, we will demonstrate that this may be fully
achieved on the basis of the general 3D quantum theory
studied in reference [11]. Then, in Section 3.2, consider-
ing that the 1D quantum fluid of light is well within the
weakly interacting regime, we shall apply the modulus-
phase Bogoliubov theory of dilute atomic Bose gases to
describe its quantum fluctuations.

3.1 Quantization

To quantize the classical Gross-Pitaevskii equation (17),
one can start from the quantum field theory associated
to the 3D nonlinear wave equation (3). It was shown in
reference [11] that the quantum field operator Ê(x, ζ, τ)
corresponding to the solution of the classical equation (3)
rewritten in the coordinates (16) has to satisfy the equal-τ
[that is, equal-z; see the first of Eqs. (16)] boson commu-
tation relations

[Ê(x, ζ, τ), Ê†(x′, ζ′, τ)] = N � ω0

ε0

× δ(2)(x− x′) δ(ζ − ζ′), (20a)

[Ê(x, ζ, τ), Ê(x′, ζ′, τ)] = 0, (20b)

where
N =

2 v0

n0 c0
(21)

is a normalization parameter whose expression in terms of
the optical constants v0, n0, and c0 may be deduced from
ab initio classical-electrodynamics calculations2.

The quantization of the 1D classical theory is straight-
forwardly accomplished by replacing the classical optical
field Ψ(ζ, τ) with the projection

Ψ̂(ζ, τ) =
∫

d2x Φ∗
0(x) Ê(x, ζ, τ) (22)

2 See reference [11]. Note that a factor 1/2 is missing in equa-
tion (24) of this reference, the mistake coming from a double
counting of the dynamical variables involved in the classical
field theory investigated in Section III B.

of the total 3D quantum field operator Ê(x, ζ, τ) onto
the transverse ground state of wavefunction Φ0(x), for
instance given (see Appendix A) by the second of equa-
tions (A.2) in the case of a parabolic confining potential or
by equation (A.7b) in the case of a square-well-shaped one.
Multiplying equation (20a) [Eq. (20b)] by Φ∗

0(x)Φ0(x
′) [by

Φ∗
0(x)Φ∗

0(x
′)], integrating over both x and x′, and using

the normalization condition
∫

d2x |Φ0|2 = 1, one eventu-
ally finds that (22) obeys the same-τ commutation rules

[Ψ̂(ζ, τ), Ψ̂†(ζ′, τ)] = N � ω0

ε0
δ(ζ − ζ′), (23a)

[Ψ̂(ζ, τ), Ψ̂(ζ ′, τ)] = 0. (23b)

The normally-ordered quantized version of the classical
1D equation (17) reads

i �
∂Ψ̂
∂τ

= − �
2

2 m

∂2Ψ̂
∂ζ2

+ E0 Ψ̂ + g Ψ̂† Ψ̂ Ψ̂. (24)

As originally pointed out in the pioneering works [36,37],
it has the form of a quantum nonlinear Schrödinger equa-
tion, i.e., of the quantum Gross-Pitaevskii equation in the
context of atomic Bose gases [13]. It may be rewritten in
the form of a quantum mechanical evolution equation in
the Heisenberg representation, i.e., in the form

i �
∂Ψ̂
∂τ

= [Ψ̂, Ĥ(τ)], (25)

where

Ĥ(τ) =
(
N � ω0

ε0

)−1

×
∫

dζ Ψ̂†
(

− �
2

2 m

∂2

∂ζ2
+ E0 +

g

2
Ψ̂† Ψ̂

)

Ψ̂ (26)

is the normally ordered many-body quantum Hamiltonian
operator of the optical system. The first contribution in
the integral over ζ is the kinetic term in the ζ = v0 t − z
direction at a given position z along the optical axis,
that is, at a given time τ = z/v0, the second one cor-
responds to the transverse-ground-state energy shift due
to the optical confinement in the x, y directions, and the
last one accounts for the two-photon interactions medi-
ated by the Kerr nonlinearity of the dielectric constitut-
ing the optical waveguide. Note that referring to Ĥ(τ) as
a “Hamiltonian” follows from its interpretation as an evo-
lution operator, although it physically corresponds to the
z component of the momentum operator, as it generates
translation in the z direction.

The quantum Gross-Pitaevskii equation (24) and the
boson commutation relations (23) at equal times τ (i.e., at
equal propagation distances z) and at different positions ζ
(i.e., at different physical times t) constitute the heart of
the 1D quantum field theory investigated in this work. Ac-
cording to Section 2.2.1, the classical counterpart (17) of
the quantum equation (24) is valid as long as the single-
transverse-mode condition (14) is fulfilled. This naturally
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transfers to equation (24) upon the quantization proce-
dure (22). At this stage of the paper, no hypothesis has
been made on the strength of the two-photon interactions,
as a result of which equation (24) makes it possible to de-
scribe quantum features in the 1D fluid of light for generic
values of the photon-photon interaction parameter.

In the following, we nevertheless shall focus our atten-
tion on the weak-interaction regime, that is, the dilute or
superfluid limit. This latter may be obtained by requiring
that the interaction term g Ψ̂† Ψ̂ Ψ̂ in the 1D equation (24)
is small compared to the kinetic term −�

2 ∂ζζΨ̂/(2 m) =
−�

2 ∂ttΨ̂/(2 v2
0 m). Approximating Ψ̂† Ψ̂ by |Ψ|2 and eval-

uating the second-order derivative ∂ttΨ̂ as ∂ttΨ̂ ∼ F2 Ψ̂,
where F = P/(� ω0) = 1

2 c0 ε0 n0 |Ψ|2/(� ω0), which is
homogeneous to the inverse of a time, denotes the pho-
ton flux (also called photon power in photon-counting
physics), the dilute-gas regime is reached when

|g| |Ψ|2 � �
2

2 v2
0 |m|

F2 ∝ �
2

2 |m| (|Ψ|
2)2, (27)

which corresponds to the weak-interaction limit [13,49]

|λ1D|n1D �
�

2

2 M
n2

1D (28)

for a 1D atomic fluid, where, as introduced in Sec-
tion 2.2.1, λ1D and n1D respectively denote the 1D atom-
atom interaction constant and the 1D atom density, and
M is the atom mass. Using equations (4), (9), (18),
and (19), eliminating the beam’s power P from the left-
hand side of (27), and multiplying the inequality by
|n2(ω0)|/Aeff , the constraint (27) may be reformulated as
the following condition for the nonlinear shift ΔnNL of the
waveguide’s refractive index defined in equation (15):

2 (� ω0)2 k0 |ñ2(ω0)|2
|D0|A2

eff

� |ΔnNL|. (29)

In the opposite limit, the 1D photon gas is in the
strong-interaction regime, the so-called Tonks-Girardeau
regime [45,50–54]. The study of this regime in a
1D-waveguide geometry will be the subject of future
works [55,56].

3.2 Modulus-phase Bogoliubov theory of quantum
fluctuations

When a gas of weakly interacting bosons presents a macro-
scopically occupied, i.e., condensate, state, it is well known
that its quantum fluctuations may be accurately treated
by means of the Bogoliubov theory of linearized fluctua-
tions [12,13,57,58]. In a 1D configuration, it is also known
that the quantum fluctuations of the phase of the field
operator which describes the fluid are strong and pre-
vent the occurrence of a true condensation [59,60]. Conse-
quently, in this case, a more sophisticated version of the
standard Bogoliubov theory of linearized fluctuations has

to be used to treat in a proper way the quantum fluc-
tuations of the weakly interacting Bose gas. In the fol-
lowing, we shall apply the extended Bogoliubov theory of
dilute atomic Bose gases in reduced dimensions [61–63] to
the 1D propagating geometry investigated in this work,
assuming that the photon fluid is well in the weakly in-
teracting regime (29), as mentioned in the last paragraph
of Section 3.1. Note that this approach has been used in
reference [64] to investigate the coherence properties of
low-dimensional driven-dissipative photon fluids. As first
indicated in references [65,66], the existence of driving and
dissipation in the system requires including nonlinear cor-
rections to the Bogoliubov theory of linearized fluctua-
tions. This is however not the case in the present work,
where (in the assumed absence of photon absorption) the
dynamics of the quantum fluid of light is purely conserva-
tive, as in the atomic case.

Following references [61–63], one starts by expressing
the quantum field operator (22) and its Hermitian conju-
gate in polar form:

Ψ̂(ζ, τ) = ei[ϕ̂(ζ,τ)−μτ/�]
√

ρ̂(ζ, τ), (30a)

Ψ̂†(ζ, τ) =
√

ρ̂(ζ, τ) e−i[ϕ̂(ζ,τ)−μτ/�], (30b)

where the square modulus of Ψ̂(ζ, τ),

Ψ̂†(ζ, τ) Ψ̂(ζ, τ) = ρ̂(ζ, τ) = ρ + δρ̂(ζ, τ), (31)

is assumed to weakly fluctuate around a uniform (that is,
ζ-independent) stationary (that is, τ -independent) aver-
age value ρ while the quantum phase operator ϕ̂(ζ, τ) is
supposed to smoothly vary in space (i.e., to weakly depend
on ζ). In the classical phase shift −μ τ/�, μ corresponds
in the theory of Bose fluids to the chemical potential of
the gas [12,13]. To be consistent with equations (23), the
real fields ρ̂(ζ, τ) and ϕ̂(ζ, τ) have to obey the following
commutation relation:

[ρ̂(ζ, τ), ϕ̂(ζ ′, τ)] = i N � ω0

ε0
δ(ζ − ζ′). (32)

As the phase ϕ̂(ζ, τ) is allowed to take arbitrarily large
values, no hypothesis is made on the presence of a conden-
sate state, as a result of which the modulus-phase refor-
mulation (30)–(32) of the quantum field theory presented
in Section 3.1 makes it possible to treat the absence of
long-range order inherent to conservative 1D Bose sys-
tems [59–63].

Substituting equations (30) into equation (24) and sep-
arating the real and imaginary parts, one gets the well-
known coupled continuity and Euler-type hydrodynamic
equations for the total “density” ρ̂(ζ, τ) and the velocity
field � ∂ζϕ̂(ζ, τ)/m (see Refs. [61–63]). Then, one linearizes
these latter with respect to δρ̂(ζ, τ) and ∂ζϕ̂(ζ, τ) around
the classical, uniform, and stationary background profile
ρ̂(ζ, τ) = ρ and ∂ζϕ̂(ζ, τ) = 0. The zero-order terms pro-
vide the expression of the chemical potential μ,

μ = E0 + g ρ, (33)
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while the first-order ones give the following coupled evo-
lution equations for the operators δρ̂(ζ, τ) and ϕ̂(ζ, τ):

i �
∂

∂τ

(
δρ̂√
ρ

)

= − �
2

2 m

∂2

∂ζ2
(2 i
√

ρ ϕ̂), (34a)

i �
∂

∂τ
(2 i
√

ρ ϕ̂) =
(

− �
2

2 m

∂2

∂ζ2
+ 2 g ρ

) (
δρ̂√
ρ

)

. (34b)

The solutions δρ̂(ζ, τ) and ϕ̂(ζ, τ) of equations (34), os-
cillating around the homogeneous and stationary back-
ground pattern such that ρ̂(ζ, τ) = ρ = const and
∂ζ ϕ̂(ζ, τ) = 0 may be expressed as linear superpositions
of plane-wave-type elementary excitations:

δρ̂(ζ, τ) =
√

ρ

∫
dk

2π
(uk + vk) eikζ b̂k(τ) + H.c., (35a)

ϕ̂(ζ, τ) =
1

2 i
√

ρ

∫
dk

2π
(uk − vk) eikζ b̂k(τ) + H.c.,

(35b)

where “H.c.” means “Hermitian conjugate”. In the plane-
wave expansions (35), the b̂k(τ)’s [b̂†k(τ)’s] are ladder op-
erators annihilating (creating) at the propagation time τ
photon excitations of energy

� ωk =
√

� Ωk (� Ωk + 2 g ρ) (36)

in the plane-wave mode of wavenumber k in the ζ direc-
tion, where the k-dependent angular frequency Ωk is de-
fined as

� Ωk =
�

2 k2

2 m
. (37)

They harmonically evolve as

b̂k(τ) = e−iωkτ b̂in
k , (38)

where b̂in
k = b̂k(τ = 0), and obey the following Bose com-

mutation rules at the same time τ :

[b̂k (τ), b̂†k′ (τ)] = 2πN � ω0

ε0
δ(k − k′), (39a)

[b̂k (τ), b̂k′ (τ)] = 0. (39b)

Finally,

uk, vk =
1
2

Ωk ± ωk√
Ωk ωk

(40)

are the so-called Bogoliubov amplitudes, such that u2
k −

v2
k = 1.

The elementary excitations of the 1D quantum fluid of
light of constant “density” ρ are plane waves of wavenum-
ber ± k in the ζ direction, i.e., of angular frequency
δω = ∓ v0 k as ζ is nothing but, at a given position z
along the optical axis, the physical time t multiplied by
the group velocity v0 [see the second of Eqs. (16)]. Their
k-dependent energy (36) [the k-dependent law (37)] cor-
responds to the well-known Bogoliubov (free-particle) dis-
persion relation of a uniform dilute Bose gas at rest. We
then see that the hypothesis of small “density” fluctua-
tions δρ̂ = ρ̂ − ρ and of slow variations of the phase ϕ̂ is

sufficient for having the Bogoliubov excitation spectrum,
no matter there is or is not a macroscopically occupied,
condensate, state in the system. Within the z ←→ t map-
ping adopted in this work, � ωk straightforwardly corre-
sponds to a wavenumber along the radiation, z, axis.

The Bogoliubov dispersion law � ωk is a real function
of k when the effective photon mass m and the two-photon
interaction parameter g, that is, the group-velocity disper-
sion D0 [see Eq. (18)] and the Kerr-nonlinearity coefficient
n2(ω0) [see Eqs. (4), (9), and (19)], are of same sign: m
and g ≷ 0, that is, D0 and n2(ω0) ≶ 0. Considering from
now on that it is the case, the waveguide’s dispersion and
the two-photon collision processes mediated by the Kerr
nonlinearity of the underlying medium do not give rise to
dynamically unstable behaviors in the 1D quantum fluid of
light. At low excitation wavenumbers, i.e., when ξ |k| � 1,
where

ξ =
�√

m g ρ
(41)

is the healing length of the light fluid, � ωk is phononlike:
� ωk 
 s |� k|, where

s =
√

g ρ

m
=

�

|m| ξ (42)

is the speed of sound in the photon fluid. An experiment
aiming at probing the linear part of � ωk and, in turn, at
measuring s in a 1D-waveguide geometry is presently in
progress [67]. In the opposite regime, i.e., when ξ |k| � 1,
� ωk approaches the particlelike dispersion relation (37):
� ωk 
 |� Ωk| + |g| ρ; in the present context, the Hartree
interaction term |g| ρ corresponds to the standard mod-
ification of the propagation constant due to the optical
nonlinearity of the underlying medium [11].

4 Light coherence in response to quantum
quenches in the Kerr nonlinearity

Up to now, we endeavoured to review in Section 2 the
paraxial propagation of a quasimonochromatic electro-
magnetic wave in a 1D nonlinear waveguide, to quantize
in Section 3.1 the corresponding 1D classical field theory,
and finally to describe in Section 3.2 the evolution of the
quantum fluctuations of the 1D optical field in the bulk of
the waveguide, assumed to be weakly nonlinear. Making
use of these results, we investigate in the present section
the light beam’s coherence properties resulting from the
existence of the air–nonlinear-dielectric interfaces which
delimit the waveguide in the z direction.

Having in mind the reformulation of the propagation
of the optical field in the increasing-z direction in terms
of a temporal evolution (cf. Sect. 2.2.2), it is straight-
forward to see evidence that the propagating configura-
tion investigated in the present work constitutes a very
simple realization of a pair of quantum quenches of the
Hamiltonian of the full 1D optical system in the nonlin-
ear photon-photon interaction parameter g: as the optical
nonlinearity is nonzero only inside the Kerr material con-
stituting the waveguide, the first (second) quench occurs
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x

z
yω0, k0 ω0, β0 = n0 k0 ω0, k0

∼ √
Aeff

Air

L

n0, Δn(x, ω0), n2(ω0) Air

Fig. 1. Sketch of the considered experimental configuration. A
laser beam of angular frequency ω0 and propagation constant
k0 in the positive-z direction is sent in a 1D nonlinear optical
waveguide of length L along the z axis, background refractive
index n0, optical confinement Δn(x, ω0), and Kerr coefficient
n2(ω0). At the entrance (exit) face of the nonlinear material,
i.e., at z = 0 (z = L), the photon-photon interaction constant
suddenly jumps from zero to ∝ n2(ω0) [from ∝ n2(ω0) to zero];
this results in a pair of quenches of the full system’s quantum
Hamiltonian. The degree of first-order coherence (74) of the
transmitted light, i.e., emerging from the z = L exit face of
the waveguide, reveals a loss of coherence in the 1D quantum
fluid of light.

at the entrance (exit) face of the nonlinear medium, where
the value of the two-photon interaction constant g sud-
denly jumps from 0 to ∝ n2(ω0) �= 0 [from ∝ n2(ω0) �= 0
to 0] (see Fig. 1).

While the present study focuses on the dilute-gas
limit (29), regime within which the quantum fluctuations
of the 1D photon fluid are accurately described by the
modulus-phase Bogoliubov theory of dilute Bose gases
(cf. Sect. 3.2), application of the general 1D quantum the-
ory presented in Section 3.1 to the strongly interacting,
Tonks-Girardeau, regime is possible and will be the sub-
ject of forthcoming publications [55,56].

After having presented in Section 4.1 the physical situ-
ation, we shall provide in Section 4.2 an analytical descrip-
tion of the evolution of the quantum fluctuations of the op-
tical field accounting for the presence of the air-waveguide
and waveguide-air interfaces. Then, in Section 4.3, we shall
study the coherence properties of the transmitted beam of
light, in response to the sudden quenches in the photon-
photon interaction constant.

4.1 Physical situation

A sketch of the above-discussed configuration is drawn in
Figure 1. The 1D nonlinear optical waveguide is encom-
passed between z = 0 (defining its entrance face) and
z = L (corresponding to its exit face). Its group-velocity
dispersion D0 = D(ω0) and its Kerr coefficient n2(ω0)
at the laser pump’s angular frequency ω0 are assumed to
be of same sign to prevent the occurrence of dynamical
instabilities (see the last paragraph of Sect. 3.2) in the
1D photon fluid, supposed to be well within the weakly
interacting regime (29). The quasimonochromatic beam
which illuminates the z = 0 entrance face of the waveg-
uide is assumed to have a wide top-hat spatial profile in
the x = (x, y) plane as well as a constant power all along

the optical axis before entering the waveguide so that it
can be legitimately seen as an infinite plane wave propa-
gating without amplitude attenuations in the increasing-z
direction.

Back-propagating waves originating from reflection on
the entrance (at z = 0) and the back (at z = L) faces of the
waveguide would spoil the reformulation of light propaga-
tion in the positive-z direction in terms of a time evolution.
To avoid dealing with their existence, we assume that the
z = 0, L interfaces are treated with a perfect antireflection
coating. As its characteristic thickness in the z direction
(of the order of a few optical wavelengths) is typically
much smaller than all the other lengths involved in the
investigated configuration, its effect on light transmission
can be summarized as simple boundary conditions guar-
anteeing the conservation of the electromagnetic-energy
flux, i.e., the Poynting vector, at the z = 0, L surfaces:

Ê(x, z = 0−, t) =
√

n0 Ê(x, z = 0+, t), (43a)
√

n0 Ê(x, z = L−, t) eiβ0L = Ê(x, z = L+, t) eik0L, (43b)

where Ê(x, z, t) denotes the quantized complex amplitude
of the electric field in air (z < 0 or z > L) or in the waveg-
uide (0 < z < L). Equations (43) allow for matching the
quantum fluctuations of the optical field in air to the ones
propagating in the nonlinear waveguide (see Sect. 4.2.3).

4.2 Time evolution of the quantum fluctuations

4.2.1 Optical field outside the waveguide

Outside the waveguide (when z < 0 or z > L), i.e., in air,
the quantized electric field

Ê(x, z, t) =
1
2
Ê(x, z, t) ei(k0z−ω0t) + H.c. (44)

of the light wave (one recalls that k0 = ω0/c0 denotes
its propagation constant in the positive-z direction in
air) may be expressed in terms of a quantized amplitude
Ê(x, z, t) that can be shown to admit, at first order in
the paraxial and slowly-varying-envelope approximations
considered in this work, the following expansion [11]:

Ê(x, ζ, τ) = [E0 + δÊ(x, ζ, τ)] eiϕ(τ), (45)

written as a function of the coordinates ζ and τ defined in
equations (16). In equation (45), the classical amplitude
E0, supposed constant [that is, independent on x, z, and t
(see the first paragraph of Sect. 4.1), and so on x, τ , and ζ,
respectively] and real, corresponds to the coherent, classi-
cal, component of the envelope of the light wave’s electric
field in air, ϕ(τ) is a global phase that is assumed piece-
wise constant, null before entering the medium (z < 0,
i.e., τ < 0) and equal to ϕ> after exiting it (z > L, i.e.,
τ > L/v0), and the field operator δÊ(x, ζ, τ) is a small
quantum correction to the classical amplitude E0 that may
be shown to satisfy the plane-wave decomposition

δÊ(x, ζ, τ) =
√

v0

c0

∫
d2q dk

(2π)3
ei(q·x+kζ) α̂q,k(τ). (46)
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In this expansion, the ratio v0/c0 under the square root
originates from the fact that we use the same definition
for the variables ζ and τ [cf. Eqs. (16)] irrespective of
whether one is outside or inside the medium, although
it would have been more natural to define ζ and τ in
air as ζ = c0 t − z and τ = z/c0; as explained in ref-
erence [11], this will facilitate the matching of the fields
at the air-dielectric interfaces (see Sect. 4.2.3). On the
other hand, the ladder operators α̂q,k(τ) are deduced
from the usual photon-annihilation operators γ̂q,qz in the
state of wavevector (q, qz), where q = (qx, qy) [in passing,
d2q = dqx dqy in Eq. (46)], as:

α̂q,k(τ) = i

√

2
v0

c0

� ω0

ε0
eiv0[δqz(q,k)+k]τ γ̂q,k0+δqz(q,k),

(47)
where

δqz(q, k) = − q2

2 k0
− v0

c0
k (48)

is the photon dispersion relation ω(q, qz) = c0

√
q2 + q2

z
in air expanded at first order in q2 (|q|/k0 � 1) and the
small z-wavevector and frequency deviations δqz = qz −
k0 (|δqz|/k0 � 1) and δω = ω(q, qz) − ω0 = −v0 k
(|δω|/ω0 = v0 |k|/ω0 � 1), i.e., at first order in the parax-
ial and slowly-varying-envelope approximations; by means
of equations (47), (48), and the well-known commutation
rules of the γ̂q,qz ’s, one shows that the paraxial-photon-
destruction operators α̂q,k(τ) are subject to the equal-τ
Bose commutation relations

[α̂q,k (τ), α̂†
q′,k′(τ)] = (2π)3Nvac

� ω0

ε0

× δ(2)(q − q′) δ(k − k′), (49a)
[α̂q,k(τ), α̂q′,k′(τ)] = 0, (49b)

where Nvac = 2 is the vacuum value of the normalization
constant (21).

The 1D reduction of the above-sketched 3D descrip-
tion of the quantum fluctuations of the electric field in air
is naturally accomplished by projecting the 3D quantum
field operator (45) onto the state describing the transverse
motion, in the same way as was done in Section 3.1 [see
Eq. (22)]. To facilitate the matching (43) of the Poynting
vector at the front and the back faces of the nonlinear
waveguide (see Sect. 4.2.3), we project equation (45) onto
the fundamental transverse modal function Φ0(x) of the
waveguide, exactly as in equation (22), which yields

Ψ̂(ζ, τ) = [
√

ρair + δΨ̂(ζ, τ)] eiϕ(τ), (50)

where
√

ρair =
∫

d2x Φ∗
0(x) E0 and

δΨ̂(ζ, τ) =
√

v0

c0

∫
dk

2π
eikζ âk(τ). (51)

In equation (51), the âk(τ)’s are defined as

âk(τ) =
∫

d2q

(2π)2
Φ̃∗

0(q) α̂q,k(τ), (52)

where Φ̃0(q) =
∫

d2x Φ0(x) e−iq·x is the Fourier trans-
form of Φ0(x); making use of equations (49) and of
the normalization condition

∫
d2q |Φ̃0(q)|2/(2π)2 =∫

d2x |Φ0(x)|2 = 1, one easily shows that they have to
satisfy the same-τ commutation rules

[âk (τ), â†
k′ (τ)] = 2πNvac

� ω0

ε0
δ(k − k′), (53a)

[âk(τ), âk′ (τ)] = 0. (53b)

In order to be consistent with the modulus-phase formu-
lation (30, 31) of the 1D optical field Ψ̂(ζ, τ) propagating
in the waveguide, we can reexpress its counterpart in air,
given by equation (50), in the following polar form:

Ψ̂(ζ, τ) = ei[ϕ̂(ζ,τ)+ϕ(τ)]
√

ρair + δρ̂(ζ, τ). (54)

Requiring that the quantum field operators δρ̂(ζ, τ) and
ϕ̂(ζ, τ) have to be linear combinations of the âk(τ)’s, one
expands equation (54) up to first order in powers of δρ̂ and
ϕ̂ and identifies the resulting equation with equation (50),
which is by nature linear in the âk(τ)’s [see Eq. (51)]; this
leads to

δρ̂(ζ, τ) =
√

ρair δΨ̂(ζ, τ) + H.c. (55a)

=
√

v0 ρair

c0

∫
dk

2π
eikζ âk(τ) + H.c. (55b)

and

ϕ̂(ζ, τ) =
1

2 i
√

ρair
δΨ̂(ζ, τ) + H.c. (56a)

=
1
2 i

√
v0

c0 ρair

∫
dk

2π
eikζ âk(τ) + H.c. (56b)

We end up with formulas for the quantum operators in air
very similar to the ones we have derived in Section 3.2 in
the case of the 1D nonlinear optical waveguide. The differ-
ences come from the fact that, in air, the refractive index
equals one and the Kerr coefficient is zero, explaining the
Nvac = 2 in the commutation relation (39a), as well as the
absence, in the plane-wave expansions (55b) and (56b), of
the k-dependent weights uk ± vk = (Ωk/ωk)±1/2 present
in equations (35), here equal to one (indeed, ωk ≡ Ωk

when g ≡ 0). Finally, the square-root factor
√

v0/c0 in
equations (55b) and (56b) originates from equation (46).

4.2.2 Optical field inside the waveguide

Inside the waveguide (i.e., in the 0 < z < L region), the
spatiotemporal evolution of the optical field is ruled by
the quantum Gross-Pitaevskii equation (24). In the case
where the average power P = 1

2 c0 ε0 n0 ρ of the light beam
in the dielectric assumes a homogeneous and stationary
(that is, ζ- and τ -independent) profile all along the 1D
propagation between the entrance (at z = 0) and the
exit (at z = L) of the nonlinear waveguide, the photon
field Ψ̂(ζ, τ) satisfying equation (24) may be written in
the polar form (30a, 31), with the fluctuating operators
δρ̂(ζ, τ) = ρ̂(ζ, τ) − ρ and ϕ̂(ζ, τ) given by equations (35)
in the weak-Kerr-nonlinearity regime (29) considered in
this work.
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4.2.3 Matching at the interfaces and scattering matrix

The way in which the output quantum state of the light
beam, after propagation in the nonlinear medium (z > L,
i.e., τ > L/v0), depends on the input one, before entering
the waveguide (z < 0, i.e., τ < 0), is found by matching
the quantum fields (30a) and (54) through equations (43),
i.e., after projecting those equations onto Φ0(x), through

Ψ̂(ζ, τ = 0−) =
√

n0 Ψ̂(ζ, τ = 0+), (57a)
√

n0 Ψ̂(ζ, τ = Δτ−) eiβ0L = Ψ̂(ζ, τ = Δτ+) eik0L, (57b)

where we introduced, for future convenience, the notation
Δτ = L/v0, which corresponds to the time spent in the
nonlinear waveguide of length L by a photon wavepacket
propagating in the positive-z direction at constant
velocity v0.

At the mean-field level, the continuity equations (57)
of the Poynting vector at the z = 0, L interfaces entails (i)
that the background “densities” ρair and ρ of the fluid of
light outside and inside the waveguide have to be related
through

ρair = n0 ρ (58)

and (ii) that the classical phase ϕ(τ > Δτ) = ϕ> = const
of the optical field after exiting the medium must be
given by

ϕ> = (β0 − k0)L− μ Δτ

�
=

(
β0 − k0 − μ

� v0

)
L. (59)

We now move to the matching of the quantum fluctua-
tions, defining, first, the input and the output mode op-
erators âin

k and âout
k of the scattering problem as

âin
k = âk(τ = 0−) and âout

k = âk(τ = Δτ+), (60)

respectively. At the entrance face of the waveguide, that
is, at τ = 0, equation (57a) yields

[
b̂in
k

(b̂in
−k)†

]

= Sin
k

[
âin

k

(âin
−k)†

]

, (61)

where b̂in
k = b̂k(τ = 0+) [see Eq. (38)] and

Sin
k =

√ N
Nvac

[
uk −vk

−vk uk

]

. (62)

At the exit, that is, at τ = Δτ , equation (57b) leads to
[

âout
k

(âout
−k )†

]

= Sout
k

[
b̂out
k

(b̂out
−k )†

]

, (63)

where b̂out
k = b̂k(τ = Δτ−) = e−iωkΔτ b̂in

k [cf. Eq. (38)] and

Sout
k =

√
Nvac

N
[
uk vk

vk uk

]

. (64)

Substituting the above-given definition of the b̂out
k ’s and

equation (61) into equation (63), one eventually finds that
[

âout
k

(âout
−k )†

]

= Sk

[
âin

k

(âin
−k)†

]

, (65)

where

Sk = Sout
k

[
e−iωkΔτ 0

0 eiωkΔτ

]

Sin
k =

[
ũk ṽ∗k
ṽk ũ∗

k

]

(66)

is the scattering matrix of the quenched propagating sys-
tem. It connects the input quantum modes in air to
the output ones and is defined in terms of the modified
Bogoliubov amplitudes

ũk = u2
k e−iωkΔτ − v2

k eiωkΔτ , (67a)

ṽk = uk vk

(
e−iωkΔτ − eiωkΔτ

)
. (67b)

In the Δτ → 0 limit (that is, in the absence of waveguide),
ũk → 1 (since u2

k − v2
k = 1), ṽk → 0, and so the scattering

matrix Sk tends to the 2 × 2 identity matrix, leading to
âout

k → âin
k , as it has to be in such a limit.

For a perfectly coherent and monochromatic incident
beam, which one assumes here, the quantum modes of
the incident field are in the vacuum state |vac〉 of the in-
put operators âin

k , defined as âin
k |vac〉 = 0 for all k, that

is, for all optical angular frequency ω different from the
laser pump’s one ω0 [see the discussion between Eqs. (48)
and (49)]. As a consequence, denoting the quantum aver-
age in the vacuum state |vac〉 as 〈·〉 = 〈vac| · |vac〉, one has

〈âin
k âin

k′ 〉 = 〈(âin
k )† âin

k′ 〉 = 0 (68)

and, by virtue of the commutation relation (53a),

〈âin
k (âin

k′ )†〉 = 2πNvac
� ω0

ε0
δ(k − k′). (69)

The statistical properties of the light beam emerging from
the waveguide are fully obtained by considering these iden-
tities as the initial conditions of the propagating problem.
For example, the momentum-space correlation functions

nk,k′ = 〈â†
k (Δτ+) âk′(Δτ+)〉 = 〈(âout

k )† âout
k′ 〉 (70)

and

mk,k′ = 〈âk(Δτ+) â−k′ (Δτ+)〉 = 〈âout
k âout

−k′〉 (71)

at the back face of the nonlinear waveguide3 are obtained
by combining equations (65), (68), and (69), which yields

nk,k′ = 2πNvac
� ω0

ε0
|ṽk|2 δ(k − k′) (72)

and

mk,k′ = 2πNvac
� ω0

ε0
ũk ṽ∗k δ(k − k′). (73)

These results, and most particularly equation (72), will be
useful in the next section.

3 When k′ = k, the correlation functions (70) and (71) cor-
respond to the so-called normal and anomalous averages in the
physics of atomic Bose gases. Note also that

∫
dk′ nk,k′/(2π) is

directly proportional to the excitation momentum distribution
at the exit of the waveguide.
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4.3 First-order coherence of the transmitted light

In this section, we propose to investigate the first-order
coherence properties of the light emerging from the waveg-
uide, in response to the pair of quenches in the Kerr non-
linearity at z = 0 (i.e., τ = 0) and z = L (i.e., τ = Δτ).

From a theoretical (experimental) point of view, this
amounts to calculate (measure) the degree of first-order
coherence [68]

g1(ζ, ζ′) =
G1(ζ, ζ′)

√
G1(ζ, ζ)G1(ζ′, ζ′)

(74)

after propagation of the 1D optical field Ψ̂(ζ, τ) through
the medium, say, at the instant τ = Δτ+, that is, at the
z = L+ exit face of the waveguide4, as a function of the
spatial coordinates ζ = v0 t − L+ and ζ′ = v0 t′ − L+,
that is, as a function of the time parameters t and t′. In
equation (74), the G1 function is defined as

G1(ζ, ζ′) = 〈Ψ̂†(ζ, Δτ+) Ψ̂(ζ′, Δτ+)〉, (76)

where the 1D quantum field operator Ψ̂(ζ, Δτ+) is given
by equation (54) evaluated at τ = Δτ+ and the quantum
average 〈·〉 = 〈vac| · |vac〉 is taken over the |vac〉 state of
the input paraxial-photon-mode operators âin

k , related to
the output ones, the âout

k ’s, through equation (65).
When |g1| = 1 (|g1| = 0, |g1| /∈ {1, 0}), the light is said

coherent (incoherent, partially coherent, respectively) [68].
In the physics of 1D atomic Bose gases, within which the
1D-confined particles may be described by a quantum field
Ψ̂(ζ, τ) [we use the same notations as the ones of Eq. (76)],
G1(ζ, ζ′) is the (ζ, ζ′) component of the one-body density
matrix ρ1 of the Bose gas: G1(ζ, ζ′) = 〈ζ|ρ1|ζ′〉 [13,70].

4.3.1 Analytical derivation

Within the modulus-phase representation (54) of the
quantum optical field Ψ̂(ζ, Δτ+) describing the dilute 1D

4 The interesting quantum-quench physics featured by the
g1 function, originating from the presence of the air–nonlinear-
medium interfaces, may be entirely captured at the very back
face of the waveguide. Afterwards, in the z > L region of space,
the (scalar) electric field of the light wave freely propagates
in air. Its quantum state at an observation point (x, z) close
to the direction of propagation (that is, in the paraxial ap-
proximation) and at a distance z − L � 1/k0 reasonably far
from the z = L+ planar aperture of the optical waveguide
may be deduced from the knowledge of the field radiated by
the aperture by means of the Kirchhoff diffraction formula for
nonmonochromatic waves (see, e.g., Ref. [69]):

Â(x, z, t) � 1

2π c0 (z − L)

×
∫

z′=L+

d2x′ ∂Â
∂t

(

x′, z′, t −
√|x − x′|2 + |z − z′|2

c0

)

, (75)

where Â(x, z, t) = Ê(x, z, t) eik0z.

quantum fluid of light exiting the waveguide, the normal-
ized correlation function (74) may be deduced from the
generic formula [62,71]

g1(ζ, ζ′) = exp
{

−1
8
〈: [δρ̂(ζ, Δτ+)− δρ̂(ζ′, Δτ+)]2 :〉

ρ2
air

−1
2
〈: [ϕ̂(ζ, Δτ+)− ϕ̂(ζ ′, Δτ+)]2 :〉

}

, (77)

where the “density” fluctuation δρ̂(ζ, τ) around ρair and
the phase operator ϕ̂(ζ, τ) are respectively given by equa-
tions (55b) and (56b), and : · : denotes the normal-
ordering operation with respect to the paraxial-photon
oscillators âk(τ) in air.

At the back face of the waveguide, that is, at τ = Δτ+,
the degree of first-order coherence admits a very simple
formulation. On the one hand, using equation (55b), one
gets

− 1
8
〈: [δρ̂(ζ, Δτ+)− δρ̂(ζ′, Δτ+)]2 :〉

ρ2
air

= − v0

4 c0 ρair

∫
dk dk′

(2π)2
Re(nk,k′ + mk,k′ )

× (eikζ − eikζ′
)(e−ik′ζ − e−ik′ζ′

), (78)

and on the other hand, using equation (56b),

− 1
2
〈: [ϕ̂(ζ, Δτ+)− ϕ̂(ζ ′, Δτ+)]2 :〉

= − v0

4 c0 ρair

∫
dk dk′

(2π)2
Re(nk,k′ −mk,k′ )

× (eikζ − eikζ′
)(e−ik′ζ − e−ik′ζ′

), (79)

where nk,k′ and mk,k′ are defined in equations (70)
and (71), respectively. The sum of equations (78) and (79)
corresponds to the argument of the exponential (77) defin-
ing the g1 function at τ = Δτ+; the mk,k′ contributions
cancel out, which leaves, making use of equation (72),

g1(|ζ − ζ′|) = exp
{

−2
v0

c0

� ω0

ε0 ρair

×
∫

dk

2π
|ṽk|2 [1− cos(k |ζ − ζ′|)]

}

, (80)

where one redenotes g1(ζ, ζ′) as g1(|ζ − ζ′|) to highlight
that it is only function of the relative distance between ζ =
v0 t−L+ and ζ′ = v0 t′−L+ (z = z′ = L+), that is, of the
time delay |t−t′|. This dependence is natural since we have
considered that the photon fluid outside the waveguide
(as well as inside, in passing) is of homogeneous, that is,
ζ-independent, background “density” ρair.
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Taking advantage of equations (36)–(40) and (67b),
one may finally reformulate equation (80) in the form

g1(|ζ − ζ′|) = exp
{

−2
v0

c0

� ω0

ε0 ρair

(g ρ

�

)2

×
∫

dk

2π

[
sin(ωk Δτ)

ωk

]2

[1−cos(k |ζ − ζ′|)]
}

(81a)

= exp
{

− 8
π

v0

c0

� ω0

ε0 ρair ξ

×
+∞∫

0

dκ
sin2(1

4 κ
√

κ2+4 rc)
κ2 (κ2+4)

[1−cos(κ r)]
}

,

(81b)

where

r =
|ζ − ζ′|

ξ
=

v0 |t− t′|
ξ

(82)

is the relative distance between ζ and ζ′ at z = L normal-
ized by the healing length ξ = �/

√
m g ρ (ρ = ρair/n0) of

the 1D fluid of light in the nonlinear waveguide, and

rc =
|ζ − ζ′|c

ξ
=

v0 |t− t′|c
ξ

=
2 s Δτ

ξ
, (83)

recalling that s =
√

g ρ/m = �/(|m| ξ) is the Bogoliubov
speed of sound in the photon gas. To fully understand
the rich physics hidden in equations (81), it is useful to
distinguish a few regimes.

1/ r � rc regime

In the r � rc regime, i.e., according to equations (82)
and (83), in the case where |ζ− ζ′| � |ζ− ζ′|c = 2 s Δτ , or
else when |t − t′| � |t − t′|c = 2 (s/v0)Δτ , the first-order
correlation function (81b) may be approximated by the
rc-independent – i.e., independent on Δτ , or equivalently,
on the waveguide’s length L – law

g<
1 (|ζ − ζ′|) = exp

[

− 4
π

v0

c0

� ω0

ε0 ρair ξ

+∞∫

0

dκ
1− cos(κ r)
κ2 (κ2 + 4)

]

(84a)

= exp
[

−1
4

v0

c0

� ω0

ε0 ρair ξ
(−1 + 2 r + e−2r)

]

.

(84b)

Depending on the actual value of r, two subregimes can
be identified.

1.a/ r � 1 limit

In the r � 1 limit, i.e., when |ζ−ζ′| � ξ (|t− t′| � ξ/v0),
the r � rc approximation (84) of the g1 function presents
a thermal-like exponential behavior:

g<
1 (|ζ − ζ′|) 
 exp

[

−π
|ζ − ζ′|

d1D Λ2(Teff)

]

, (85)

expressed as a function of the 1D number density d1D of
photons in the waveguide, which is in passing determined
as the ratio of the photon flux F = P/(� ω0), where P =
1
2 c0 ε0 n0 ρ = 1

2 c0 ε0 ρair is the power of the beam of light,
by the group velocity v0,

d1D =
F
v0

=
1
2

c0

v0

ε0 n0 ρ

� ω0
=

1
2

c0

v0

ε0 ρair

� ω0
, (86)

and in terms of the effective thermal de Broglie wavelength

Λ(Teff) =

√
2π �2

|m| kBTeff
(87)

evaluated at the effective quench-induced temperature

Teff =
1
kB

|g| ρ
2

=
1
kB

|g| ρair/n0

2
, (88)

kB denoting the Boltzmann constant. Notice that Λ(Teff)
given by equation (87) is nothing but a redefinition of the
healing length ξ of the quantum fluid of light: Λ(Teff) =
2
√

π × ξ.

1.b/ r � 1 limit

In the opposite r � 1 limit, that is, when |ζ − ζ′| � ξ
(|t− t′| � ξ/v0), the r � rc estimation (84) of the degree
of first-order coherence g1(|ζ − ζ′|) presents a Gaussian
shape given by

g<
1 (|ζ − ζ′|) 
 exp

[

−π
|ζ − ζ′|2

d1D ξ Λ2(Teff)

]

, (89)

where d1D and Λ(Teff) are respectively defined in equa-
tions (86) and (87).

2/ r > rc regime

To complete the analytical dissection of g1(|ζ − ζ′|), let
us finally analyse the r > rc behavior of equation (81b),
i.e., the regime for which |ζ − ζ′| > |ζ − ζ′|c = 2 s Δτ , or,
in the original coordinates z and t, for which |t − t′| >
|t− t′|c = 2 (s/v0)Δτ . In this case, the coherence function
g1 presents (small) damped oscillations around a plateau
corresponding to its finite large-r limit,

g>
1 = lim

r→+∞ g(1)(|ζ − ζ′|) (90a)

= exp
{

− 8
π

v0

c0

� ω0

ε0 ρair ξ

×
+∞∫

0

dκ
sin2(1

4 κ
√

κ2 + 4 rc)
κ2 (κ2 + 4)

}

. (90b)

Also in this case, two subregimes can be identified as a
function of the value of rc.
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Table 1. Numerical parameters used for plotting Figures 2
and 3. λ0 = 2π/k0 = 2π c0/ω0 and P = 1

2
c0 ε0 ρair =

1
2

c0 ε0 n0 ρ are the operating wavelength in air and the av-
erage laser power. The refractive index n0, the group ve-
locity v0, and the group-velocity-dispersion parameter D0 at
ω = ω0 are deduced from the dispersion law n = n(ω) of sili-
con established in reference [72], the Kerr coefficient ñ2(ω0) =
2 n2(ω0)/(c0 ε0 n0), given in intensity units, may be found in
reference [73], and the estimate of the effective transverse-mode
area Aeff is chosen among typical values given in reference [8].
Finally, as in the text, L denotes the length of the 1D nonlinear
optical waveguide.

Beam of light 1D nonlinear optical waveguide

λ0 = 1.55 μm n0 � 3.5
P = 500 W v0 � 8.3 × 107 m/s

D0 � 1.1 × 10−24 s2/m
ñ2(ω0) � 4.5 × 10−18 m2/W
Aeff = 1 μm2

L =

{
1, 1.5, 2 mm (see Fig. 2a)
10 km (see Fig. 2b)

2.a/ rc � 1 limit

In the rc � 1 limiting case, corresponding to the case
where the waveguide’s length L is such that L � v0 ξ/s,
we have the following asymptotic expansion:

ln g>
1 = −1

2
v0

c0

� ω0

ε0 ρair ξ

(

rc − 1
2

)

+ o
rc→+∞(1). (91)

2.b/ rc � 1 limit

In the opposite rc � 1 (i.e., L� v0 ξ/s) limit, one finds

ln g>
1 = − 2

3
√

π

v0

c0

� ω0

ε0 ρair ξ
r3/2
c + o

rc→0
(1). (92)

4.3.2 Physical discussion

We are now going to discuss the analytical results estab-
lished in Section 4.3.1. To explain the features displayed
by the degree of first-order coherence of the light beam
exiting the waveguide, we will provide graphical represen-
tations of the g1 function as well as numerical estimates of
the relevant parameters of the problem making use of the
optical constants listed in Table 1, both for the laser beam
and the 1D nonlinear optical waveguide. These parameters
are inspired from silicon photonics. To put in better ev-
idence the conservative-dynamics features, we will make
the assumption of vanishing propagation losses. A quan-
titative condition for the accuracy of this approximation
will be briefly discussed in the next-to-the-last paragraph
of the present section for the most important case of one-
photon absorption.

General behavior of the coherence function
of the transmitted light

Figure 2 displays the natural logarithm of the g1 func-
tion at the exit of the medium [Eq. (81b)] as a function

0 20 40 60 80 100
r = |ζ − ζ ′|/ξ = v0 |t− t′|/ξ

−2.5 10−7

−2 10−7

−1.5 10−7

−1 10−7

−0.5 10−7

0

ln
g 1

(|ζ
−

ζ
′ |)

rc|L3

ln g>
1 |L3

(a) L1,2,3 = 1, 1.5, 2 mm

rc|L3 60 80

−2.11 10−7

ln g>
1 |L3

−2.05 10−7

100

0 1 108 2 108 3 108 4 108 5 108

r = |ζ − ζ ′|/ξ = v0 |t− t′|/ξ
−1.25

−1

−0.75

−0.5

−0.25

0

ln
g 1

(|ζ
−

ζ
′ |)

rc|L4

ln g>
1 |L4

(b) L4 = 10 km

Fig. 2. Natural logarithm of the degree of first-order coherence
g1(|ζ − ζ′|) of the light exiting the waveguide [Eq. (81b)] as a
function of the dimensionless relative distance r [Eq. (82)]. The
numerical parameters used for tracing the curves are listed in
Table 1. The magenta (purple, blue) curve in panel (a) and
the orange one in panel (b) are obtained for L = L1 = 1 mm
(L2 = 1.5 mm, L3 = 2 mm) and L4 = 10 km long, respectively,
1D nonlinear waveguides. The vertical (horizontal) dotted lines
indicate the value of rc defined by equation (83) [of ln g>

1

given by Eq. (90b)] in the case where L = L3: rc|L3 � 36.5
(ln g>

1 |L3 � −2.1 × 10−7), and in the case where L = L4:
rc|L4 � 1.8 × 108 (ln g>

1 |L4 � −1.1). The thick gray dashed
curves in panels (a) and (b) correspond to the L-independent
r � rc approximation (84b) of g1 and the inset in panel (a) fo-
cuses on the oscillatory behavior of ln g1(|ζ − ζ′|) around ln g>

1

for L = L3.

of the dimensionless distance r [Eq. (82)] for L = L1,2,3 =
1, 1.5, 2 mm (see Fig. 2a) and L4 = 10 km (see Fig. 2b)
long waveguides. At the z = L face of the waveguide, that
is, Δτ = L/v0 < +∞ seconds of evolution after the quench
of the fluid of light at z = 0 (where, in passing, laser co-
herence is not yet affected by the presence of the inter-
face: g1 → 1 as Δτ → 0), g1 decays mostly exponentially,
as predicted by equation (85) and indicated by the gray
dashed curves in Figure 2, up to rc = |ζ − ζ′|c/ξ, whose
position corresponds to the vertical dotted lines in the fig-
ure. Notice that for a fixed effective mass m and a fixed
interaction parameter g, the characteristic length of the
exponential decay in equation (85) ends up not depending
on the light power P [use Eqs. (86)–(88)]; of course, the
higher the value of the two-photon interaction constant g,
the faster the thermal-like decay (85) is. Afterwards, for
r > rc, g1 stays approximately locked to the constant
value g1(|ζ − ζ′|c); in fact, it weakly oscillates (see the in-
set of Fig. 2a) around its, numerically almost equivalent,
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0 2.5 5 7.5 10
Length L of the waveguide/fiber (km)

−1

−0.75

−0.5

−0.25

0

ln
g

> 1

Fig. 3. Natural logarithm of the r → +∞ limit g>
1 of the g1

function, given by equation (90b), as a function of the waveg-
uide’s length L (red curve). The thick gray dashed line cor-
responds to the large-L behavior of ln g>

1 , as predicted by
equation (91).

constant r → +∞ limit g>
1 given by equation (90b) and

indicated by the horizontal dotted lines in Figure 2.

Relaxation of the photon gas towards a prethermalized state

As the time Δτ = L/v0 after the quench of the quantum
fluid of light at z = 0 increases, that is, as longer and
longer waveguides are considered, rc increases too and the
r > rc plateau of the g1 function decreases, which we shall
discuss later with the help of Figure 3. This evolution con-
tinues until the photon gas reaches, in the limiting case
where Δτ = +∞, a thermal-like state where g1 is of the
exponential form (85) across the entire 1D system, that is,
as ζ is nothing but t at a fixed propagation time τ , over
the entire duration of the measurement of the first-order
coherence function. This prethermalized state corresponds
to the relaxed, equilibrium, state of the 1D quantum fluid
of light after the quench experienced at z = 0. It emerges
locally within the photon gas since the r � rc exponential
behavior of g1 at different propagation times Δτ < +∞
perfectly coincides with its exponential decay. According
to equation (88), its effective temperature Teff originates
from the energy jump |g| ρ = |g| ρair/n0 at the z = 0
air-waveguide interface. Using the realistic numerical pa-
rameters listed in Table 1, one finds Teff 
 2.9 K.

Short-time Gaussian behavior of the coherence function
of the transmitted light

As predicted by the analytical formula (84b), the whole
r � rc behavior of the coherence function g1 at the exit
of the waveguide (indicated by the gray dashed curves
in Fig. 2) is more complicated than the above-discussed
thermal-like exponential decay (85), the latter being in
fact an approximation of equation (84b) valid in the 1�
r � rc regime. In the case where r � 1, i.e., when |ζ −
ζ′| � ξ ⇐⇒ |t − t′| � ξ/v0, g1 is Gaussian, given by
equation (89). This behavior is typical of a noninteracting
Bose system [13,70], for which g = 0 and, as a result, ξ =
+∞. However, within the range of numerical parameters
given in Table 1 and as one may note from Figure 2, the
1� r � rc thermal-like exponential behavior (85) prevails
upon the r � 1 “noninteracting” Gaussian one (89), the

r � 1 limit corresponding to a tiny, even totally hidden
in Figure 2b, portion of the curves.

Light-cone-like spreading of the thermal correlations
at the Bogoliubov sound velocity

According to the two first paragraphs, a given point ζ in
the 1D quantum fluid of light establishes thermal correla-
tions with other points ζ′ as long as the distance |ζ−ζ′| is
smaller than a certain characteristic value |ζ−ζ′|c. Accord-
ing to equation (83), the latter linearly scales with the time
Δτ elapsed after the quantum quench as |ζ−ζ′|c = 2 s Δτ .
This means that the prethermalized state of g1 func-
tion (85) emerges in a light-cone-like evolution in the pho-
ton gas, the propagation velocity of the thermal corre-
lations corresponding to the Bogoliubov speed of sound
s defined in equation (42). This may be understood as
follows. As investigated in reference [11], the sudden mod-
ification of the optical nonlinearity at the entrance face
of the dielectric is accompanied by a dynamical Casimir
emission [74–77] of pairs of correlated Bogoliubov excita-
tions propagating in opposite directions along the ζ axis
with wavenumbers ± k ≷ 0, i.e. (cf. explainations in the
fifth paragraph of Sect. 3.2), of correlated paraxial photons
whose angular frequencies ω0 ± δω = ω0 ∓ v0 k ≶ ω0 are
symmetrically distributed around the laser pump’s one ω0.
As the modulus of their group velocity

vg(± k) =
∂ωk

∂k
(± k) = ± s

(ξ k)2 + 2
√

(ξ k)2 + 4
(93)

in the ζ ≷ 0 direction is an increasing function of k, the
Bogoliubov fluctuations forming each of the pairs emitted
at τ = 0 establish thermal correlations at τ = Δτ as soon
as their separation distance

|ζ − ζ ′| < min
k
|vg(k)− vg(−k)|Δτ = 2 s Δτ, (94)

which corresponds to the previously-discussed light-cone
condition. Considering the numerical parameters given in
Table 1, the Bogoliubov sound velocity s 
 7.0×105 m/s,
which corresponds to a healing length ξ 
 9.2 × 10−7 m.
For a L = 2 mm long waveguide (blue curve in Fig. 2a),
one thus has |ζ − ζ′|c 
 3.4 × 10−5 m, and so |t − t′|c =
|ζ − ζ′|c/v0 
 4.0× 10−13 s. In the case where L = 10 km
(Fig. 2b), |ζ − ζ′|c 
 168.0 m and |t− t′|c 
 2.0× 10−6 s.

Loss of long-lived coherence in the course
of the propagation along the waveguide

When |ζ−ζ′| > |ζ−ζ′|c, that is, when |t−t′| > |t−t′|c, the
coherence function g1 stops decaying and is approximately
locked to its r → +∞ limit g>

1 given by the formula (90b)
and indicated by the horizontal dotted lines in Figures 2a
and 2b for 2 mm and 10 km long waveguides. Even though
g>
1 is nonzero, it is however smaller than unity: this indi-

cates that the beam of light has partially lost its origi-
nal long-lived coherence in the course of its propagation
along the 1D nonlinear medium. This loss of coherence
is expected to be significant for very long waveguides: in-
deed, using Table 1, ln g>

1 starts being smaller than −1
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from a waveguide length ∼ L4 = 10 km, for which one
precisely has ln g>

1 
 −1.1. This could have detrimental
practical consequences, typically in fiber-optic communi-
cation where information has to be transmitted from one
place to another over distances sometimes of the order of
several hundreds of kilometers. In Figure 3, we plot ln g>

1
against L. According to the asymptotic formula (91), the
long-distance tail of the degree of first-order coherence is
expected to exponentially tend to zero as L increases:

g>
1 ∼

L→+∞
exp(−L/�c), (95)

with a coherence length

�c =
c0 ε0 ρair ξ2

� ω0 s
(96)

equal to 
 9.5× 103 m given the numerical parameters of
Table 1. g>

1 → 0 when L → +∞, in full accordance with
the Mermin-Wagner-Hohenberg-Coleman theorem [78–80]
which stipulates that long-range order cannot exist in an
infinite uniform 1D quantum fluid at nonzero tempera-
ture. According to equation (96), the coherence length
�c monotonically decreases with the light power P as
�c ∝ P−1/2; this is the direct consequence of the power-
dependence of the healing length ξ and of the Bogoliubov
speed of sound s [see Eqs. (41) and (42), respectively].
Given the wide range of waveguide lengths L considered
in Figure 3, the small-L behavior (92) of g>

1 , which should
be visible for L’s much smaller than v0 ξ/s 
 1.1×10−4 m
(see the last paragraph of Sect. 4.3.1 and use Tab. 1), can-
not be displayed on the graph.

Oscillations around the plateau (90)

As shown in the inset of Figure 2a, the r > rc part of
the first-order coherence function displays weak-amplitude
damped oscillations around the plateau g>

1 . Measuring on
the graph the wavelength λosc of these oscillations, we
find λosc 
 4.8 ξ, which corresponds to a wavenumber
kosc = 2π/λosc 
 1.3 ξ−1, and so such that ξ kosc � 1.
This indicates that the oscillation features displayed by g1

originate from the contribution of the large-wavenumber,
free-particle, Bogoliubov modes to the response of the
fluid of light to the sudden quantum quench at z = 0,
as we are now going to explain. First of all, imagine that
the switching on of the photon-photon interactions at the
z = 0 interface takes place on a finite length δz along
the z axis, i.e., over a finite duration δτ = δz/v0, the
sudden-quench case studied in this work being obviously
recovered by taking the limit δτ → 0. In the case where
δτ � �/(|g| ρ), the quench excites modes whose wavenum-
ber k (along the ζ = v0 t − z axis) belongs to the low-k
part of the Bogoliubov spectrum,

|k| < k∗ =
1

s δτ
� 1

ξ
, (97)

for which the dispersion law has the form ωk 
 s |k|
(see Sect. 3.2), while all the other modes experience the
finite-duration modulation of the optical nonlinearity as

adiabatic [81]. Correspondingly, the g1 function (81a) may
be approximated as

g1(|ζ − ζ′|) 
 exp
{

−2
v0

c0

� ω0

ε0 ρair

(g ρ

�

)2

×
k∗∫

−k∗

dk

2π

[
sin(s |k|Δτ)

s |k|
]2

[1− cos(k |ζ − ζ′|)]
}

. (98)

Taking the k∗ → +∞ limit in this latter equation corre-
sponds to performing a sudden quench [cf. Eq. (97)] while
sticking to a phononic approximation. In this case, the in-
tegral in equation (98) is a two-step trapezoidal function
of |ζ − ζ′| which linearly decreases up to |ζ − ζ′| = 2 s Δτ
and which stays constant above, roughly as in Figure 2a,
but with an angular sliding edge at |ζ − ζ′| = 2 s Δτ
and without oscillations for |ζ − ζ′| > 2 s Δτ : a low-
wavenumber, phononic, description of the response to the
sudden quench we have at the entrance face of the waveg-
uide predicts no oscillation feature in the g1 function.
As a consequence, the oscillations around the partial-
coherence plateau g>

1 that we observe in Figure 2a are due
to the large-wavenumber, free-particle, Bogoliubov modes
excited in the quenched quantum fluid of light.

Effect of photon absorption

In the present work, we have focused on the case of a
lossless fiber, for which the evolution of the light field
is conservative. However, in an actual waveguide, photon
absorption, and so dissipation, is well and truly present.
In this final paragraph, we briefly establish the condi-
tion under which one can still apply the conservative
evolution law (38) to describe the propagation of the
quantum fluctuations of the beam of light along an ac-
tual, dissipative, fiber. For simplicity’s sake, one will only
consider linear losses, that is, one-photon absorption [8],
which results in an exponential decay of the beam’s power
P = 1

2 c0 ε0 n0 ρ as a function of the propagation distance
0 < z = v0 τ < L = v0 Δτ along the waveguide:

P(z) = P0 e−αdBz/10, i.e., ρ(τ) = ρ0 e−Γτ , (99)

where αdB = 10 Γ/v0 > 0 is the attenuation constant of
the fiber, expressed in dB/m [8]. Assuming the adiabatic
approximation, for which the dissipation rate Γ is much
smaller than any other frequency scale of the photon fluid,
the evolution of the Bogoliubov operators b̂k(τ) may be
modeled by a Heisenberg-Langevin equation [82,83] of the
form [84,85]

∂b̂k

∂τ
= −i ωk(τ) b̂k − Γ

2
b̂k + uk(τ) ξ̂k − vk(τ) ξ̂†−k. (100)

In this equation,

� ωk(τ) =
√

� Ωk [� Ωk + 2 g ρ(τ)] (101)

and

uk(τ), vk(τ) =
1
2

Ωk ± ωk(τ)
√

Ωk ωk(τ)
(102)
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are the instantaneous Bogoliubov energy and Bogoliubov
amplitudes, respectively, and ξ̂k(τ) is a quantum-noise op-
erator which commutes with the b̂k(τ)’s and which satisfies
the commutation rules

[ξ̂k (τ), ξ̂†k′ (τ ′)] = 2πN � ω0

ε0
Γ δ(k − k′) δ(τ − τ ′), (103a)

[ξ̂k(τ), ξ̂k′ (τ ′)] = 0 (103b)

at different times τ , τ ′ to make the solution of equa-
tion (100), namely,

b̂k(τ) = e−i
∫

τ
0 dτ ′ ωk(τ ′) e−Γτ/2 b̂in

k

+
∫ τ

0

dτ ′ e−i
∫ τ

τ′ dτ ′′ ωk(τ ′′) e−Γ(τ−τ ′)/2

× [uk(τ ′) ξ̂k(τ ′)− vk(τ ′) ξ̂†−k(τ ′)], (104)

obey the algebra (39) at all times τ . According to equa-
tions (99), (101), and (102), equation (104) may be ap-
proximated by the conservative, dissipationless, law (38)
as soon as Γ τ < 1 for all τ , and so, a fortiori, as soon as
Γ Δτ < 1, that is, αdB L/10 < 1: this imposes the max-
imum value Lmax = 10/αdB of fiber length over which
one can safely ignore the effect of photon absorption at
the quantum-fluctuation level. While this condition is not
straightforwardly satisfied for silicon-based devices, other
material choices will provide the required level of trans-
parency. The detailed investigation of the rich post-quench
dissipative quantum dynamics in longer 1D waveguides
will be the subject of future works.

Concluding remarks

The results presented above extend to the present 1D
paraxial-optics configuration recent experimental stud-
ies on the relaxation dynamics of a quenched phase-
fluctuating ultracold 1D Bose gas [42–44], as well
as theoretical works on prethermalization in generic
many-body 1D quantum systems [86], in Fermi [87–90]
and Luttinger [91,92] liquids, in long-range quantum
Ising models [93,94], on the light-cone-like spread-
ing of two-point correlations following a quantum
quench [81,95–100], and on the links between this effect
and the local emergence of thermal-like features [101]. In
the present optical context, the quench of the system’s
Hamiltonian simply originates from the fact that the non-
linear dielectric possesses an entrance face5; in that re-
spect – as the quench protocol is provided by the very
nature of the used platform – no extra manipulation on
the system needs to be implemented by the experimen-
talist to get the prethermalization features shown in Fig-
ure 2. This illustrates the power of nonlinear-waveguide

5 As discussed in the introduction of Section 4 and in Sec-
tion 4.1, the photon fluid is also quenched at the exit of the
waveguide. This is fully accounted for in our analytical descrip-
tion of the g1 function, but as we focus our attention on what
happens at the very back face of the medium, just after the sec-
ond quench, only the consideration of the first quantum quench
at the z = 0 entrance face matters for the present discussion.

setups as a simple platform to study quantum dynami-
cal aspects in quenched many-body 1D Bose systems. Fi-
nally, it is of paramount importance to test the validity of
the two main hypothesis of the present study – namely,
the single-transverse-mode condition (14) and the dilute-
gas constraint (29) – for the realistic optical parameters
given in Table 1. On the one hand, one checks that the
right-hand side of the inequality (14) is approximately
102 times larger than the nonlinearity parameter |ΔnNL|,
validating the single-transverse-mode approximation (14)
and so the classical (quantum) 1D Gross-Pitaevskii equa-
tion (17) [(24)]. On the other hand, the left-hand side
of (29) is around 1015 times smaller than |ΔnNL|, which
ensures that the considered photon fluid is (very) dilute6

and, as a result, that its quantum fluctuations can be de-
scribed with a good accuracy by means of the modulus-
phase Bogoliubov theory of weakly interacting Bose gases
reviewed in Section 3.2.

5 Conclusion

Using a general quantum theory of paraxial light propaga-
tion in 1D nonlinear geometries, we have investigated the
coherence properties of a beam of light emerging from a
finite-length single-mode 1D waveguide presenting a weak
Kerr nonlinearity. By mapping the longitudinal propaga-
tion of the optical field in the increasing-z direction onto a
time evolution and by identifying the actual time parame-
ter t as a spatial coordinate, we have entirely reformulated
our predictions in the language of many-body physics as
the response of a 1D fluid of many weakly interacting
photons to a pair of quantum quenches in the photon-
photon interaction constant at the entrance and the exit
of the nonlinear waveguide. Pursuing along the lines of
reference [11], this makes it possible to illustrate the po-
tential of nonlinear propagating geometries as novel, sim-
ple, platforms for studying quantum dynamical features
in quenched many-body Bose systems.

At the exit of the waveguide, the degree of first-order
coherence of the transmitted light features the occurrence
of a relaxation dynamics of the quantum fluid of light to-
wards a prethermalized state typical of quenched quantum
systems of weakly interacting bosons [42–44,81,86–101].
The corresponding thermal correlations emerge locally in
their final form in the photon gas, spreading in a light-
cone-like evolution at the Bogoliubov speed of sound.
This directly results in a loss of long-lived coherence in
the transmitted beam of light, which could have detri-
mental practical consequences in telecommunication via
kilometer-long optical fibers.

While the present study mainly focuses on the weak-
interaction regime, the general 1D quantum theory

6 Given the numerical values of Table 1, one may show that
the inequality (29) starts being no longer valid from input op-
tical powers P � 1 pW. In that case, under suitable conditions
on the incident beam’s coherence and on the injection mech-
anism [55,56], the 1D photon fluid is expected to enter the
strongly interacting, Tonks-Girardeau, regime.
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actually holds for any values of the 1D two-photon inter-
action constant. As a result, it may be used for studying
quantum dynamical features in the strongly interacting,
Tonks-Girardeau, regime, which may be obtained for both
large 1D Kerr-nonlinearity coefficients and low optical
powers. Its theoretical investigation in a typical nonlinear-
optics configuration will be the subject of forthcoming
publications [55,56].
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Appendix: Analytical results for optical
potentials U(x) of experimental interest

A.1 Parabolic potential

An optical confinement of parabolic shape may be realized
when

Δn(x, ω) = −1
2

n(ω) κ
2 x2, (A.1a)

U(x) =
1
2

β0 κ
2 x2 [from the first of Eqs. (4)],

(A.1b)

where κ is a positive parameter controlling the strength
of the confinement. By analogy with quantum-gas physics,
this amounts to consider the well-known problem of atoms
of mass M confined along the z axis by means of a trans-
verse harmonic trapping potential U⊥(x) = 1

2 M ω2
⊥ x2 of

oscillation frequency ω⊥. Solving the 2D Schrödinger-type
equation κ0 Φ0 = [−∇2/(2 β0) + U(x)] Φ0, one finds

κ0 = κ and Φ0(x) =

√
2

π w2
e−x2/w2

, (A.2)

where w = (β0 κ/2)−1/2. Correspondingly,

Aeff = π w2 (A.3)

[cf. Eq. (10)], E0 = � v0 κ [cf. the definition of E0 be-
fore Eq. (19)], and, by means of equations (4), (9), (19),
and (A.3),

g = −� k0 v0 n2(ω0)
π w2

. (A.4)

Furthermore, the dilute [constraint (29)] single-transverse-
mode [constraint (14)] regime is obtained when

2 (� ω0)2 k0 |ñ2(ω0)|2
π2 |D0|w4

(29)� |ΔnNL|
(14)� 2

n0 k2
0 w2

. (A.5)

A.2 Square-well potential

In the case where the waveguide is composed of a core of
squared transverse cross section a×a and refractive index
n(ω) transversally surrounded by a cladding of refractive
index N(ω) < n(ω), one has

Δn(x, ω) =

{
0 (|x|, |y| � a/2)
N(ω)− n(ω) (|x|, |y| > a/2)

, (A.6a)

U(x) =

{
0 (|x|, |y| � a/2)
U0 (|x|, |y| > a/2)

, (A.6b)

where, using the first of equations (4), U0 = −k0 (N0 −
n0) > 0 [with N0 = N(ω0)] and we have assumed
that the cladding is approximately infinite in the trans-
verse x and y directions. This amounts to consider the
well-known problem of a quantum particle of wavefunc-
tion Φ0(x) trapped in a 2D potential well of barrier en-
ergy 0 < U0 � +∞. In order to facilitate the analyt-
ical resolution of the Schrödinger-type equation κ0 Φ0 =
[−∇2/(2 β0)+U(x)] Φ0 supplemented by equation (A.6b),
one takes the limit U0 → +∞. In this case, one finds the
well-known results

κ0 =
π2

β0 a2
(A.7a)

and

Φ0(x) =

⎧
⎨

⎩

2
a

cos
(π x

a

)
cos

(π y

a

)
(|x|, |y| � a/2)

0 (|x|, |y| > a/2)
,

(A.7b)

yielding

Aeff =
4
9

a2, (A.8)

E0 = π2
� v0/(β0 a2), and

g = −9 � k0 v0 n2(ω0)
4 a2

. (A.9)

Within the dilute single-transverse-mode regime, the non-
linear shift ΔnNL of the waveguide’s refractive index de-
fined in equation (15) satisfies

81 (� ω0)2 k0 |ñ2(ω0)|2
8 |D0| a4

(29)� |ΔnNL|
(14)� π2

n0 k2
0 a2

. (A.10)

When κ0 < U0 < +∞, the modal function Φ0(x) is ap-
proximately of the form (A.7b) in the core of the optical
waveguide and it exponentially decreases to zero outside.
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